SYNTHESIS OF PYRYLIUM SALTS BY CONDENSATION OF BENZALACETOPHENONE WITH ALIPHATIC CARBONYL COMPOUNDS

G. N. Dorofeenko and L. B. Olekhnovich

UDC 547.812.07

The acid condensation of chalcone with aliphatic ketones, aldehydes, and β -dicarbonyl compounds was studied for the first time. Tri- and tetrasubstituted pyrylium salts, including compounds containing functional substituents, were obtained.

It is known that symmetrical triaryl-substituted pyrylium salts have been obtained by the reaction of chalcones with aliphatic-aromatic and aromatic ketones in the presence of Lewis acids, strong mineral acids, or dehydrating agents such as polyphosphoric acid, $H_2SO_4 + POCl_3$ [1], $ZnCl_2$, $PbCl_2$ [2], $HClO_4$ [3], $BF_3 \cdot Et_2O$ [4,5], Ph_3CClO_4 [6], and CH_3COClO_4 [7]. The mechanism of their formation includes the addition of the methyl or methylene ketone to the chalcone via the Michael reaction to give a 1,5-diketone with subsequent cyclization and dehydrogenation, based on the properties of the chalcone salt as a hydride-ion acceptor [8]. There is no information on the reaction of chalcones with aliphatic compounds in the literature available to us. The preparation of 2-methyl-3-carbethoxy-4,6-phenylpyrylium salt by the reaction of benzalacetophenone with acetoacetic ester in the presence of boron trifluoride etherate as the dehydrating agent is described only in one of the latter papers [8].

In order to extend the possibilities of this method, we studied the condensation of benzalacetophenone with aliphatic ketones (acetone and diethyl ketone), acetaldehyde, and β -dicarbonyl compounds (dibenzoyl-methane, acetylacetone, and acetoacetic ester) in the presence of perchloric acid. We have demonstrated that this route can be used to obtain tri- and tetrasubstituted pyrylium salts, as well as difficult-to-obtain pyrylium compounds that contain carbonyl and carboxyl groups. The reaction probably proceeds via the following scheme:

 $\mathbf{R}=\mathbf{H}$, \mathbf{CH}_{3} , $\mathbf{C}_{2}\mathbf{H}_{5}$, $\mathbf{C}_{6}\mathbf{H}_{5}$; $\mathbf{R}'=\mathbf{H}$, \mathbf{CH}_{3} , \mathbf{COCH}_{3} , $\mathbf{COC}_{6}\mathbf{H}_{5}$, $\mathbf{CO}_{2}\mathbf{C}_{6}\mathbf{H}_{5}$

To obtain pyrylium salts via this method, a mixture of benzalacetophenone and the appropriate carbonyl compound is allowed to stand for 5-10 h in the presence of anhydrous perchloric acid, which is obtained by tying up the water in 72% $HClO_4$ by means of acetic anhydride. The pyrylium salts formed are readily isolated from the reaction mixture in the crystalline state in yields of 8-45%. Owing to the mild conditions involved in carrying out this reaction, we were able to synthesize the previously unknown pyrylium salts containing acetyl and benzoyl groups in the 3 position of the pyrylium ring. Earlier attempts

Rostov State University. Scientific-Research Institute of Physical and Organic Chemistry, Rostovon-Don. Translated from Khimiya Geterotsiklicheskih Soedinenii, No. 7, pp. 883-885, July, 1972. Original article submitted July 12, 1971.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

딕	
BI	
ΓA	

LOUR CIO

ر مال اسل	A	FIDULICAL	1	ound, %	P0	o	alc., %	.0		
	Appearance	formula	U	Н	ວ	υ υ	H	ū	IR spectrum, , cm ⁻¹	Yield, %
249*	Yellow crystals	CI7H13CIO5	61,1	4,0	10,9	61,5	4,1	10,5	1630, 1590, 1540,	∞
259	Red-yellow crystals	C ₁₈ H ₁₅ ClO ₅	62,7	3,7	10,4	62,4	4,0	10,1	1480, 1380, 1090 1630, 1590, 1540,	45
223225	Yellow needles	C ₂₀ H ₁₉ CIO ₅	64,3	5,3	9,5	64,2	5,1	9,3	1460, 1100 1610, 1570, 1500,	23,5
I_3 204-205	Yellow needles	C ₂₀ H ₁₇ ClO ₆	61,8	4,3	9,4	6'19	4,3	9,1	1400, 1100 1700, 1630, 1570,	7,5
J ₅ 235236	Dark-yellow crystals	C ₃₀ H ₂₁ ClO ₆	70,9	4,5	7,0	70,9	4,1	6,9	1480, 1400, 1100 1670, 1630, 1570,	25
H ₅ 176†	Yellow crystals	C ₂₁ H ₁₉ ClO ₇	60.9	4,8	8,4	60,0	4,6	8,3	1510, 1400 1720, 1610, 1570, 1500, 1400, 1100	28
_	_		_							
[6], mp 240	•									
	I3 204-205 I4 2035-236 H5 235-236 H5 176 † [6], mp 240' [8], mp 178'	I ₃ 204-205 Yellow needles I ₅ 235-236 Dark-yellow crystals J ₅ 176 † Yellow crystals [6], mp 240°. 178°	I3 204-205 Yellow needles C20H17CIO6 45 235-236 Dark-yellow crystals C30H21CIO6 H5 176 † Yellow crystals C31H19CIO7 H5 176 † Yellow crystals C31H19CIO7 [6] mp 240°. . .	I ₃ 204-205 Yellow needles C ₃₀ H ₁₇ ClO ₅ 61,8 Fs 235-236 Dark-yellow crystals C ₃₀ H ₁₂ ClO ₆ 70,9 Hs 176 † Yellow crystals C ₃₁ H ₁₃ ClO ₇ 60,9 [6], mp 240°. [8], mp 178°.	I ₃ 204-205 Yellow needles C ₂₀ H ₁₇ ClO ₅ 61,8 4.3 I ₅ 235-236 Dark-yellow crystals C ₃₀ H ₂₁ ClO ₅ 70,9 4.5 H ₅ 176 † Yellow crystals C ₃₁ H ₁₉ ClO ₇ 60,9 4.8 [6] mp 240°. 178°. C ₂₁ H ₁₉ ClO ₇ 60,9 4.8	I ₃ 204-205 Yellow needles C ₂₀ H ₁₇ ClO ₆ 61,8 4.3 9,4 I ₅ 235-236 Dark-yellow crystals C ₃₀ H ₂₁ ClO ₆ 70,9 4,5 7,0 H ₅ 176 † Yellow crystals C ₂₁ H ₁₉ ClO ₇ 60,9 4,8 8,4 I ₆ mp 240° 	I3 $204-205$ Yellow needles $C_{20}H_{17}ClO_{5}$ $6I,8$ 4.3 $9,4$ $6I,9$ I4 $235-236$ Dark-yellow crystals $C_{30}H_{21}ClO_{5}$ $70,9$ 4.5 $7,0$ $70,9$ H_5 176 Yellow crystals $C_{31}H_{19}ClO_{7}$ $60,9$ 4.8 $8,4$ $60,0$ H_5 176 Yellow crystals $C_{21}H_{19}ClO_{7}$ $60,9$ 4.8 $8,4$ $60,0$ H_5 $T_{13}ClO_{7}$ $60,9$ 4.8 $8,4$ $60,0$ H_5 $T_{10}T_{10}ClO_{7}$	I_3 $204-205$ Yellow needles $C_{20}H_17ClO_6$ $6I_18$ $4,3$ $9,4$ $6I_9$ $4,3$ I_5 $235-236$ Dark-yellow crystals $C_{30}H_{12}ClO_6$ $70,9$ $4,5$ $7,0$ $70,9$ $4,1$ H_5 176 Yellow crystals $C_{21}H_{19}ClO_7$ $60,9$ $4,8$ $8,4$ $60,0$ $4,6$ I_6 I_76 Yellow crystals $C_{21}H_{19}ClO_7$ $60,9$ $4,8$ $8,4$ $60,0$ $4,6$ I_7 I_70	I_3 $204-205$ Yellow needles $C_{20}H_{17}ClO_6$ $6I_18$ 4.3 9.4 $6I_19$ 4.3 $9,1$ I_5 $235-236$ Dark-yellow crystals $C_{30}H_{12}ClO_6$ 70.9 4.5 $7,0$ 70.9 $4,1$ $6,9$ H_5 176 Yellow crystals $C_{21}H_{19}ClO_7$ 60.9 $4,8$ $8,4$ $60,0$ $4,6$ $8,3$ (I_6) I_70 Y_{10} Y_{10} Y_{10} Y_{10} Y_{10} $8,3$ $9,1$ I_76 Yellow crystals $C_{21}H_{19}ClO_7$ 60.9 $4,8$ $8,4$ $60,0$ $4,6$ $8,3$ I_76 I_70 I_78° I_8 I_78° I_78° I_8 I_8 I_8 I_8 I_9	I_3 $204-205$ Yellow needles $C_{20}H_{17}ClO_5$ $6I,8$ $4,3$ $9,4$ $6I,9$ $4,3$ $9,1$ $1400,1100$ $1570,1500$ I_5 $235-236$ Dark-yellow crystals $C_{20}H_{12}ClO_5$ $70,9$ $4,5$ $7,0$ $70,9$ $4,1$ $6,9$ $1670,1630,1570,100,1100$ H_5 176 Yellow crystals $C_{21}H_{13}ClO_7$ $60,9$ $4,8$ $8,4$ $60,0$ $4,6$ $8,3$ $1720,1600,1570,1100$ H_5 176 Yellow crystals $C_{21}H_{13}ClO_7$ $60,9$ $4,8$ $8,4$ $60,0$ $4,6$ $8,3$ $1720,1600,1570,1100$ H_5 T_0 Y_6 $8,4$ $60,0$ $4,6$ $8,3$ $1720,160,1570,1100$ H_5 T_0 Y_6 $8,4$ $60,0$ $4,6$ $8,3$ $1720,160,1100$ H_5 T_0 T_6 $8,4$ $60,0$ $4,6$ $8,3$ $1500,1400,1100$ H_6 H_6 $8,4$ $60,0$ $4,6$ $8,3$ $1500,1400,1100$ $1700,1100$ I_8

to synthesize such compounds did not give positive results, since the acyl groups were cleaved under the reaction conditions [9, 10].

The synthesized pyrylium salts are readily converted to the corresponding pyridines in quantitative yield by the action of 25% ammonium hydroxide. The structures and compositions of the synthesized compounds were confirmed by the results of elementary analysis and IR spectroscopy (Table 1). The IR spectra of the salts contain absorption bands at 1620-1630, 1540-1560, 1480-1510, and 100 cm⁻¹ (ClO_4^- ion), which are characteristic for pyrylium perchlorates, and at 1670-1720 cm⁻¹, which are characteristic for salts that contain benzoyl, acetyl, and carbethoxy groups in the 3 position of the pyrylium ring [11].

EXPERIMENTAL

Synthesis of Pyrylium Salts (Table 1). A 4.16-g (0.02 mole) sample of benzalacetophenone was dissolved in 20 ml of ether, and a previously prepared mixture of 2.5 ml (0.025 mole) of 70% HClO₄ and 7.5 ml of acetic acid was added dropwise with cooling, followed by the addition of 0.02 mole of the carbonyl compound. The solution was allowed to stand in the cold for 5 h, and the precipitated salt was removed by filtration, washed with ether, and crystallized from acetic acid.

2-Ethyl-3-methyl-4,6-diphenylpyridine Hydrochloride. Excess (0.2 mole) 25% ammonium hydroxide was added to 0.79 g (0.002 mole) of 2-ethyl-3methyl-4,6-diphenylpyrylium perchlorate, and the mixture was allowed to stand at room temperature for 2-3 h to give 0.4 g (75%) of red-yellow crystals. The product was washed with water, dried, and dissolved in dry ether. Anhydrous hydrogen chloride was passed through the solution to precipitate 0.24g (52%) of colorless crystals with mp 132° (from acetone). Found: C 77.9; H 6.2; Cl 10.6%. C₂₀H₂₀ClN. Calculated: C 78.0; H 6.5; Cl 11.3%. The product was quite soluble in water and, like the previously studied 2-alkyl-3,4;5,6-bistrimethylenepyridine salts [12], had respiratory stimulating action, sedative properties, and a weak analgesic effect.

<u>2,4,6-Triphenyl-3-benzoylpyridine</u>. Treatment of 0.52 g (0.001 mole) of 2,4,6-triphenyl-3-benzoyl-pyridine perchlorate with excess (0.1 mole) 25% ammonium hydroxide gave 0.32 g (78%) of red-yellow crystals with mp 165° (from acetic acid). IR spectrum: 1680, 1620, 1600, 1550, and 1500 cm⁻¹. Found: C 87.8; H 5.0%. C₃₀H₂₁ON. Calculated: C 87.6; H 5.1%.

The IR spectra of mineral-oil pastes of the synthesized compounds were recorded with a UR-20 spectrophotometer at $600-1800 \text{ cm}^{-1}$ (NaCl prism).

LITERATURE CITED

- 1. R. Wizinger, S. Losinger, and P. Ulrich, Helv. Chim. Acta, 39, 5 (1956).
- 2. W. Dilthey and C. Berres, J. Prakt. Chem., 111, 340 (1925).
- 3. A. T. Balaban, Comptes Rend., 256, 4239 (1963).
- 4. R. Lombard and J. P. Stephan, Bull. Soc. Chim. France, 1458 (1958).
- 5. R. Lombard and J. P. Stephan, Bull. Soc. Chim. France, 1369 (1957).
- 6. M. Simalty-Siemiatycki and R. Fugnitto, Bull. Soc. Chim. France, 1944 (1965).
- 7. W. Dilthey, J. Prakt. Chem., <u>94</u>, 53 (1916).
- 8. J. A. Van Allan and G. A. Reynolds, J. Org. Chem., 33, 1102 (1968).
- 9. G. N. Dorofeenko and S. V. Krivun, Ukr. Khim. Zh., 29, 1058 (1963).
- 10. S.V. Krivun and G.N. Dorofeenko, Khim. Geterotsikl. Soedin., 656 (1966).
- 11. G. N. Dorofeenko, E. P. Olekhnovich, and L. I. Laukhina, Khim. Geterotsikl. Soedin., 544 (1971).
- 12. G. N. Dorofeenko, L. V. Poddubnaya, and L. B. Olekhnovich, Material from the Conference on the Pharmacology of Central Cholinolytics and Other Neurotropic Agents [in Russian], Leningrad (1969), p. 317.